J Pure Appl Microbiol | Research Article | Volume 12, Issue 4 | Article Number: 5276

Hasnaa R. Temsaah1*, Ahmed F. Azmy2, Mai Raslan1,
Amr E. Ahmed1 and Walaa G. Hozayen1,3

1Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt.
2Microbiology and Immunology Department. Faculty of Pharmacy, Beni-Suef University, Egypt.
3Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Egypt.

Corresponding Author E-mail: h_temsaah@yahoo.com
Received: 09/09/2018| Accepted: 16/10/2018 |Published: 09/12/2018
DOI: http://dx.doi.org/10.22207/JPAM.12.4.02

SHARE

ABSTRACT

The need of extremophile enzymes is increased. Such enzymes had found their utility in bio-industries such as leather, food, animal feed, textiles, and in bioconversions and bioremediation. Screening of microorganisms producing enzymes from different areas of soil led to the isolation of 38 isolates, the isolates were plate-screened for their ability to produce extracellular enzymes. The promising strains were selected and screened for their enzyme thermostability and screened quantitatively for potential industrial and therapeutic applications. Tolerance of selected microorganisms was investigated to a varied range of pH, salinity, and enzyme activity over a range of temperature. The genotypic identification of 16S rDNA sequence of the promising strains revealed that our strains were Streptomyces mutabilis, Streptomyces ghanaensis, Streptomyces rochei and Enterobacter cloacae. The isolated microorganisms quantified as an effective producer of industrially important enzymes amylase, cellulase, esterase, casienase and therapeutic enzyme L-asparaginase. All enzymes produced from the four isolates show enzyme activity and stability at different high temperature (60 °C, 80 °C, 100 °C). The amylase shows optimum activity at 37 °C, while the other four enzymes show optimum activity at different high temperature (60 °C, 80 °C). The study shows that Streptomyces mutabilis produce acidophilic enzyme amylase, Streptomyces ghanaensis produce acidophilic enzyme cellulase and neutrophilic enzyme esterase, Enterobacter cloacae and Streptomyces rochei produce alkalophilic enzymes (L-asparaginase, caseinase) respectively. Enzymes show highest enzyme activity at high NaCl concentration (5 and 7.5%).

Keywords: Microorganism, thermophilic enzymes, Streptomyces, Enterobacter.