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The goal of this study was to evaluate the suitability of growth models to fit the
growth data of metal resistant bacteria. The growth data obtained for chromium resistant
isolates namely Bacillus cereus VITSH1 and Alcaligenes faecalis VITSIM2 cultured on
nutrient agar amended with increasing concentrations Cr3+  Cu2+  and Cd2+  were fit into
growth models. The traditional methods for enumerating bacteria are not instantaneous,
therefore necessitates mathematical models to study the behavior of microbes in a specific
experimental condition. The logistic and Gompertz models were applied to obtain the
predicted microbial numbers and to evaluate the suitability of the models to study the
growth pattern in metal stress conditions. The logistic model fit the experimental data
and was found to be superior to the Gompertz model. The results suggested that the
logistic model could be successfully applied to study the growth pattern of bacteria in
metal stress conditions.
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Study of microbial growth curve is a
fundamental aspect of predictive microbiology and
is indispensable in diverse fields of biotechnology,
genetics and ecology (Kovarove at al., 1998;
Malakar et al., 2003). Predictive microbiology is a
combination of statistical, mathematical and
microbiological principles to quantify the behavior
of particular microorganism (Schultze, 2006).
Microbial response has been expressed in terms
of concentration of colony forming units or optical
density as an indirect measurement (McMeekin et
al., 1993). Modeling of bacterial growth kinetics
enables one to describe the behavior of a particular
microorganism under different environmental
conditions and hence appropriate models are
needed to extract parameters from such growth
curves (Lopez, 2004). Microbial growth curves are
characterized by a sigmoidal shape and various

mathematical models are proposed to fit the curves
(Baranyi et al., 1993; Mckellar et al., 1997). Among
the various models two popular mathematical
models reported in literature are the Logistic and
Gompertz model (Pearl, 1927; Peleg et al., 2011).
These models serve as primary models which
describe the microbial response over time with a
characteristic set of parameter values (Whiting,
1995; McMeekin and Ross, 2002). The inability of
the logistic model to generate a sigmoidal curve
on a semi logarithmic plot led to the development
of a modified logistic model (Fujikawa et al., 2011).
Gibson et al modified the Gompertz model to better
fit the bacterial growth (Gibson  et al., 1988). Some
bacteria have developed resistance strategies to
cope up with metals which exert toxicity at high
concentration. A metal resistant isolate namely
Bacillus cereus VITSH1  and Alcaligenes faecalis
VITSIM2 isolated from soil have been employed
in the current study to analyze the effect of Cr3+,
Cu2+ and Cd2+ on the growth of the isolates. On
comparison of the models prediction and
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observations of the experimental data a good
compatibility between the model and the
measurement is necessary for the model to serve
as an explanatory tool explicitly elucidating the
behavior of the organisms upon exposure to a
particular experimental condition. The present
study was intended to investigate the suitability
of primary mathematical models to fit the bacterial
growth data.

MATERIALS   AND  METHODS

Nutrient broth and the salts used in the
present study namely basic Cr

2
 (SO

4
)

3
, CdSO

4
.H

2
O

and CuSO
4
.5H

2
O were purchased from (HiMedia,

India).
Determination of growth parameters

The first three phases of the growth
curve are described by the growth parameters such
as the maximum specific growth rate defined as the
tangent in the inflection point µmax, λ, the x-axis
intercept of the tangent and the asymptote,
maximum value reached. The growth  parameters
(µmax, λ and A) were determined from the
experimental growth data of  B.cereus VITSH1 and
A.faecalis VITSIM2 upon exposure to maximum
tolerable concentrations of Cr3+, Cu2+  and Cd2+ in
nutrient broth.
Fitting of the Models
Primary model

The mathematically modified forms of the
logistic and Gompertz equations (Eq. (1) and  Eq.
(2)) given by (Zwietering et al., 1990) were used to
fit the growth curves of metal  resistant isolates
under metal stress conditions.
y = A /{1 + exp[4µm/A(λ-t) + 2]}             Eq. (1)
y = Aexp{- exp[µm .e/A(λ-t) + 1]}          Eq. (2)
where A- asymptote, µm- tangent in the inflection
point, λ- x-intercept of the tangent, e
 =exp(1)
Model Comparison and Evaluation

From the two primary models employed
in this study, the one giving the best fit was
determined by comparison of Mean square error
(MSE), which evaluates the difference  between
the growth data estimated by the model and
measured experimentally. The model with the lower
value of MSE was satisfied to describe the data
well  (Sutherland and  Bayliss, 1994).

MSE = RSS/n =     Σ (µobserved-µpredicted)2

n
where RSS is the residual sum of squares,

n is the number of data points. The goodness of fit
was evaluated by chi-square test for 24 degrees of
freedom with 99% confidence limits for the primary
models and for 3 and 4 degrees of freedom for
secondary model.

The bias factor developed as an index of
model performance (Ross, 1996) in terms of   average
deviation between the predicted and observed
values was calculated as BF =  exp [Σln(P/O)/n]
and the average accuracy of the estimates was
assessed using the  ‘accuracy factor’ (Baranyi et
al., 1999) where AF = exp [√Σ (LnP-LnO) 2 / n],
where ‘P’ is  the predicted, ‘O’ is the observed
values and ‘n’ is the number of data points.

RESULTS   AND  DISCUSSION

The growth data obtained under metal
stress condition was fit into primary models namely
the logistic and the Gompertz model. The logistic
model served as a good primary model for the
isolates whereas the Gompertz model failed to fit
the growth data of both the isolates (data not
shown). Graphically the logistic model fit the growth
data better (Fig. 1 and 2). The statistical evaluation
is given in table 1 and 2.

On plotting the predicted values of the
logistic model against time, (Fig. 1) and (Fig. 2) the
shape of the curve was steep and the lag phase
region was extended. The lag phase as described
by Monod is one of the poorly understood growth
phases controlled by unknown regulatory
mechanisms (Monod, 1949). In order to ascertain
the effect of metals on lag phases of both the
isolates the growth rates were measured at maximum
tolerable concentration of metals. The prolonged
lag phase at maximum concentration of metal
shows a remarkable increase of delay time which is
an indication of the stress on the isolates. On
comparison of the models by MSE values, chi
square validation, bias factor and accuracy factor
assessment (Table 1 and 2) it was found that the
logistic model gave the best fit than Gompertz
model in all the data sets of both the isolates. The
chi-square values of logistic model fit the growth
data at 99% confidence limits, whereas the chi
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Fig.1. Predicted microbial numbers of Bacillus cereusVITSH1 (a) control (b) Cr3+ 2000ppm (c) Cu2+  300ppm (d)
Cd2+ 60ppm with time from logistic model

Table 1. MSE, Chi-square values, Bias factor and Accuracy
Factor determination from logistic model of Bacillus cereus VITSH1

Organism Metal Bacillus cereus VITSH1

concentration(ppm) MSE Chi-Square BF AF

Cr3+ (1500) 0.34 32.10 0.96 1.26
Cu2+ (350) 0.28 7.25 0.99 1.04
Cd2+ (80) 0.22 13.60 0.96 1.23

Table 2. MSE, Chi-square values, Bias factor and Accuracy Factor
determination from logistic model of Alcaligenes faecalis VITSIM2

Organism Metal Alcaligenes faecalis  VITSH1

concentration(ppm) MSE Chi-Square BF AF

Cr3+ (2000) 0.21 5.09 0.99 1.06
Cu2+ (300) 0.28 5.52 0.98 1.05
Cd2+ (80) 0.8 2.30 0.99 1.02

The chi-square values for 23 degrees of freedom at 99% confidence limits is 44.18
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Fig. 2. Predicted microbial numbers of Alcaligenes faecalis VITSIM2 (a) control (b) Cr3+ 1000ppm (c) Cu2+

300ppm (d) Cd2+ 80ppm with time from logistic model

square values of Gompertz model fit the growth
data for control of both the isolates but failed to fit
the data of both the isolates in the presence of
metals (data not shown). Therefore further
validation was done for logistic model alone. Upon
data fitting, though the logistic and the Gompertz
curves were not congruent in the lag phase region
as well as in the transition region of the log phase
to stationary phase, the chi square validation
results show that the overflow of error occurred in
the lag phase compared to the transition region of
log to stationary phase. A good fit was observed
with the Gompertz model without the lag phase
data which distorted the model fit. Some authors
reported in the past that the Gompertz function
shows some disadvantages. It does not give exactly
N=N0 at t=0, the lack of this information may have
significant effects on predicted growth (Van and

Zwietering, 1998) in the case of metal  treated
condition. The modified Gompertz equation
overestimates the growth rate by 15% in
comparison with other models (Membre et al.,
2004). Gompertz equation overestimated the
maximum population density, particularly when the
number of data points during the stationary phase
was limited (Buchanan, 1997). In contrast to the
present study, Gompertz model fails in data fitting
(Corbo et al., 2009) if there is no lag phase or the
lag phase is too short (paradox of negative lag
phase). Modeling the lag time is technically elusive
and also necessitates quantitative data. Cells with
lengthy lag phase may remain inscrutable by viable
count procedures. As the lag phase is influenced
by so many factors, accurate predictions of the lag
phase are difficult to track. Moreover lag phase
depends not only on current conditions but also
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on the physiological history of the cells. In spite
of the issues encountered with modeling the lag
phase of the isolates by Gompertz model, the
logistic model successfully described the growth
curves of both the isolates under metal stress
conditions. The logistic model was found to be
compatible with the experimental data including
lag phase data. The model with the lower value of
MSE was satisfied to describe the data (Sutherland
and Bayliss, 1994). In the present study the MSE
values were found to be low. Perfect agreement
between the observed and the predicted values
will have a bias factor equal to 1.Values > or < 1 will
indicate over or under Prediction. Accuracy factor
will always be equal to greater than 1. The larger
the value, the less accurate is the average estimate.
An accuracy factor of 2 indicates that the
prediction is on average different from the observed
value by a factor of 2 (Ross, 1996). The accuracy
factor of both the isolates falls between 1 and 1.3.
Models are categorized as good, acceptable and
unacceptable (Ross, 1999). Good model - BF= 0.9 -
1.05, acceptable model – BF = 0.7 – 0.9, use with
caution – BF = 1.06 – 1.15 and the unacceptable
model BF<0.7 and BF>1.15. A bias factor >1
indicates a failsafe model (Zhou et al., 2008). The
bias factor values for food spoilage micro-organism
should be between 0.75 and 1.25 (Dalgaard, 2002)
for a microbial spoilage model to be successfully
validated. In the present study the bias factor of
the logistic model was found to be a good and
acceptable model. In spite of the time delay
encountered by the cells to cope up with stress,
the logistic model which depends upon the lag
time delay probably was found to be a suitable
model to predict the growth of the organisms in
stress conditions.

CONCLUSIONS

The findings of the present study
suggest that the logistic model would be a suitable
primary model to study the growth pattern of
resistant bacteria under stress conditions,
especially metal stress conditions. Therefore the
model could also be used to develop secondary
models as a useful tool to predict the microbial
behavior in various other stress conditions. The
model could be used to evaluate microbial safety
in food under temperature stress, and to evaluate

the crop yield, soil fertility and plant growth by
analyzing the growth pattern of halotolerant
bacteria in salt resistant bacteria. As both the
isolates also showed resistance to antibiotics (data
not shown) and are of clinical importance, the
growth behavior of these microbes could be applied
in therapeutic areas for pharmacodynamic and
pharmacokinetic modeling.
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