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Four hot water springs viz., Manikaran, Vashisht, Khirganga and Tattapani
were purposely selected for isolation of thermostable lipase producing bacterial isolates.
The pH and temperature of the four thermal springs were ranged from 4.0-6.0 and 51-
105°C respectively. Isolated forty two thermophilic bacterial isolates, were described as
putative thermostable lipase producers on the basis of their ability to form zone of
clearance on tributyrin agar medium. Quantitative screening led to the selection of MBW2
bacterial isolate showing maximum thermostable lipase activity of 4.83U/ml after 24 hrs
of incubation time at 60° C temperature, was selected for morphological, biochemical and
molecular characterization. Genomic DNA isolated from the selected MBW2 bacterial
isolate was subjected to PCR amplification followed by sequencing using universal primers
for 16S rrna gene. In silico molecular analysis identified MBW2 bacterial isolate as
Aneurinibacillus thermoaerophilus strain MBW2. Optimum culture conditions for
growth and thermostable lipase activity of selected isolate were used for the enzyme
production which was purified to 3.08 fold with percent yield of 13.73% using ammonium
sulphate precipitation technique, gel filteration chromatography and ion exchange
chromatography technique. The molecular weight of the purified enzyme was found to
be 42.5 kDa using SDS-PAGE.
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Lipase (triacylglycerol hydrolase, E.C.
3.1.1.3) are the enzymes of serine hydrolase family
which can catalyze the hydrolysis and synthesis
of esters from glycerol and fatty acids. These
reactions usually proceed with high chemo-, regio-
and/or enantio selectivity at the interface between
the insoluble substrate and water'. The products
of lipase-catalyzed reactions have higher quality
and their energy consumption is lower compared
to the conventional high-temperature and high-
pressure-steam splitting methods?. Lipases are
used widely in different industries such as food
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and dairy, detergent, cosmetic, leather, paper and
pulp, biodiesel and pharmaceutical®. The major
requirement for commercial lipases is thermal
stability which would allow enzymatic reaction to
be performed at higher temperatures and would be
helpful to increase conversion rates, substrate
solubility and the viscosity of the reaction medium®*.
Further, thermophilic lipases have special
characteristics which are more in interest in
industrial processes such as higher stability and
more activity in higher temperature and in the
presence of chemicals®®’. This has drawn the
interest towards thermostable lipases in both
research and industries.

The enzyme lipase can be isolated from
bacteria, fungi, plant, algaec and animals®. But,
microbial enzymes are known to be superior
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enzymes obtained from different microorganisms,
particularly for applications in industries on
commercial scales’. Special characteristics of
microbial enzymes include their capability and
appreciable activity under abnormal conditions,
mainly of temperature. Microorganisms with
systems of thermostable enzymes that can function
at higher than normal reaction temperatures would
decrease the possibility of microbial contamination
in large scale industrial reactions of prolonged
durations'. Further, the quality of thermostability
in enzymes promotes the breakdown and digestion
of raw materials''. Thermophiles growing at the
temperature range of 60—100°C have complete
thermal equilibrium with the microenvironments and
secrete enzymes that are stable at this temperature
to support the physiological processes'?.
Therefore, the thermophiles can act as reliable
source of the thermostable enzymes.

A hot spring is a spring produced by the
emergence of geothermally heated ground
water that rises from the earth’s crust. Hot springs
are a store house of a no. of such thermophilic
microorganisms Himachal Pradesh, situated in the
lap of Himalayas, also have a no. of thermal springs.
These springs are habitat for a no of thermophilic
microorganisms which can be explored for the
synthesis of no of thermostable enzymes at the
industrial level. Pursuant to the above, screening
of thermophilic microorganisms for lipolytic
activities could facilitate the discovery of novel
lipases that are stable and function optimally at
high temperatures. Therefore, the objective of
current study was to isolate, identify and
characterize thermophilic bacteria from hot springs
of Himachal Pradesh (India) for production of
thermostable lipase enzyme along with the
purification of the thermostable lipase.

MATERIALS AND METHODS

Sampling

Samples in the form of water, soil, pebbles
and rock mattings from different sites of Manikaran,
Vashisht, Khirganga and Tattapani thermal springs
located in the districts of Kullu and Mandi of
Himachal Pradesh (India), were collected in
sterilized screw capped vials and jars. All these
samples were kept at 4°C inrefrigerator in laboratory
till further experimentation. Parameters viz., pH and
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temperature were studied for all the selected
sites(Fig.1)
Isolation of the lipase producing thermophilic
bacterial isolates

Three different isolation medium viz.,
tributyrin medium [ Peptone (5g/L); Yeast extract
(3g/L); Tributyrin (10 ml/L) and Agar (20 g/L) at pH
71, thodamine medium [Nutrient agar 28g/1, NaCl
4g/1, Rhodamine B (10 mg/1), olive oil (31ml/l) at pH
7] and olive oil medium [Peptone 5g/1, Beef extract
(3g/1), NaCl (2g/1), olive oil (60ml/1), twin 80 (10ml/
1), Agar (20g/1) at the pH 8] were investigated for
the isolation of thermostable lipase producing
bacteria. The medium showing maximum growth
0O.D. at 540 nm was selected for the isolation of
thermostable lipase producing thermophilic
bacteria. Tributyrin medium was found best for
the isolation of the thermostable lipase producing
thermophilic bacteria.
Incubation conditions

The different samples were incubated in
tributyrin broth with pH 7 at 60°C for 24 hrs in
water bath shaker incubator at 150 rpm. The cultures
showing growth turbidity were streaked on plates
of solidified tributyrin agar medium. Individual
colonies were restreaked repeatedly on the same
tributyrin medium to get the axenic cultures. The
thermostable lipase producing bacterial isolates
were screened by the presence of zone of clearance
around the colonies.
Quantitative screening of bacterial isolates

Quantitative screening was performed to
select the isolate showing maximum thermostable
lipase activity after 24 and 48 hrs of incubation.
Determination of thermostable lipase activity

Thermostable lipase activity was
determined spectrophotometrically at 420 nm with
pNP-laurate as a substrate'. The reaction mixture
contained 0.1 ml crude enzyme extract (suitable
diluted), 0.8 ml 0f 0.05 M phosphate buffer (pH 8.0)
and 0.1 ml of 0.01 M pNP-laurate. The reaction was
held at 60°C for 30 mins followed by addition of
0.25 ml of 0.1 M sodium carbonate to stop the
reaction. One unit of thermostable lipase activity
was defined as the amount of enzyme which
liberates 1 ug p-nitrophenol from pNP-laurate as
substrate in 30 minutes under standard assay
conditions.
Characterization of selected bacterial isolate

The selected isolate was then studied for
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various morphological, biochemical and molecular
characters.
Morphological and biochemical characterization

Various morphological characters viz., cell
shape, size, texture, nature of multicell aggregates,
formation of spores, and reaction to the Gram stain
were examined for selected bacterial isolate. To
carry out biochemical characterization of selected
isolate various biochemical tests viz., catalase test,
urease test, oxidase test, MR-VP test and
fermentation of sugars were performed.
Molecular characterization

The selected thermostable lipase
producing bacterial isolate was subjected to
molecular characterization using 16S ribosomal
DNA (168 rrna gene) technology.
Extraction of genomic DNA

Thermophilic bacterial culture was
inoculated into 20ml tributyrin broth and incubated
at 60°C for 24 hrs. Culture was centrifuged at 13000
rpm for 5 min, cell pellet was washed two times
with distilled water, then used for DNA isolation
using Genomic DNA extraction Mini-Kit (Real
Genomics) according to manufacturer’s
instructions.
PCR amplification

The DNA sample extracted from selected
isolate was selectively amplified using PCR
technology. Universal primers for 16S rrna gene
was used for the experiment. The PCR amplification
of the 16S rrna gene from purified genomic DNA
was carried out in 0.2 ml PCR tubes with 20 ul
reaction volume by using universal primers viz.,
forward primer (5’-GGTCAGCGGCGGAC
GGGTGAGTAAC-3") and the reverse primer (5°-
GACGGGCGGTGTGTACAGAGGCCCG-3’) and all
the amplifications were performed using thermal
cycler (MultiGene PCR system, Labnet).
Sequence analysis

The PCR product obtained through
amplification with universal 16S rrna gene primers
was sequenced, using same upstream and
downstream primers, by a commercial sequencing
facility (Eurofins lab). Similarity of nucleotide
sequence was determined using online available
bioinformatic tool, BLAST. The phylogenetic
analysis was performed using Clustal W tool™.
These sequence data has been submitted to the
GenBank database.
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Optimization of growth conditions

Optimization of various culture
conditions such as different media, incubation time,
pH of the medium and incubation temperature were
performed for maximum thermostable lipase enzyme
activity as well as for best growth of the selected
bacterial isolate. Three different media viz.,
tributyrin medium (TB), rhodamine medium (RB)
and olive oil medium (OB) were investigated for
the optimum growth and maximum lipase activity
of the selected bacterial isolate. The effect of
different incubation times for the growth and
maximum lipase activity of the selected thermophilic
bacteria was studied for 24, 48, 72,96 and 120 hrs.
The pH range was optimized using optimum
medium adjusted to a pH range from 4.0, 5.0, 6.0,
7.0,8.0,9.0,10.0, 11.0 and 12.0 separately where as
incubation temperature range investigated varied
from 40, 50, 60 and 70°C for maximum growth and
thermostable lipase enzyme activity. In all cases
optical density was monitored on a double beam
UV/VIS spectrophotometer.
Production of extracellular thermostable lipase
enzyme

1% inoculum (overnight culture) was
inoculated into the standardized medium for
thermostable lipase production followed by
incubation at optimum temperature for an optimum
period of time at 150 rpm. The cells were collected
by centrifugation at 10,000 x g, 4°C for 10 mins. The
resulting cell free supernatant (i.e. cell free extract,
CFE) was used as crude enzyme for subsequent
thermostable lipase purification. Thermostable
lipase enzyme activity as well as protein content
of crude extract was calculated. The protein content
was determined by using Lowry’s method".
Partial Purification of thermostable lipase enzyme
from selected bacterial isolate

The step of purification was performed at
a temperature of 4°C using 0.05 M sodium
phosphate buffer of pH 8.
Ammonium sulphate precipitation

The cell free culture supernatant was
precipitated by using solid ammonium sulphate to
70% saturation. The pellet obtained after
centrifugation was dissolved in 0.05ml sodium
phosphate buffer (pH 8). The lipase activity and
protein content was determined. Then dialysis was
carried out for 24 hrs against three successive
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changes of dialysis using 0.05 M sodium phosphate
buffer in dialysis bag.
Gel filtration column chromatography

The reconstituted fraction was dialysed
against same buffer and then loaded on the
Sephadex G-100 column. This column was eluted
with phosphate buffer and 3 ml fractions were
collected. The collected fractions were analyzed
for protein content and for enzyme assay. The most
active fractions were pooled and stored at 4°C till
further purification steps.
Ion exchange chromatography

The pooled enzyme preparation from
Sephadex G-100 column was applied to DEAE
Sephadex equilibrated with 0.05M phosphate
buffer (pH 8). The column was first eluted with
phosphate buffer (pH 8) to wash out unbound
proteins. The bound proteins were eluted with
linear salt gradient using four bed volumes of 0.1M
NacCl, 0.2M NacCl, 0.3M NaCl, 0.4M NaCl, 0.5M
NaCl, 0.6MNaCl, 0.7M NaCl,0.8M NaCl, 0.9M NaCl,
1.0M NaCl, 1.1IMNaCl, 1.2M NaCl, 1.3M NaCl, 1.4M
NaCl, 1.5M NaCl in phosphate buffer (pH 8). The
lipase was eluted with 1M NaCl. The fractions were
collected and assayed for lipase activity. The
specific activity of purified enzyme was compared
with that of crude enzyme and purification factor
was calculated. The active fraction was pooled,
concentrated and analyzed for purity by SDS-
PAGE.
SDS polyacrylamide gel electrophoresis

SDS polyacrylamide gel electrophoresis
of partially purified thermostable lipase enzyme was
performed by using Mini Dual Gel Electrophoresis
System (Atto Corporation, Japan) in 10%
polyacrylamide gel at 100 V. Gels were stained with
Coomassie brilliant blue G-250 and destained with
10% methanol and 10% acetic acid. The standard
protein molecular weight marker was used as for
estimation of molecular size of polypeptides of
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thermostable lipase of the selected bacterial
isolate.
Thermostability characterization

Thermophilic characterizations were
analyzed at two levels. First, isolated organisms
were cultured in high temperature (60°C) and the
thermophilic property of this isolated strain and
its enzymes, was established. The thermophilic
activity of lipase from isolated strain was assayed
in the second level by monitoring the lipase activity
at different temperatures.

RESULTS

In the present study, the occurrence of
thermotolerant bacteria producing thermostable
lipase were investigated in the four hot water
springs of the state of Himachal Pradesh, India. A
total of forty six samples from four hot water
springs were collected. The pH and temperature of
the four thermal springs were found to range from
4.0-6.0 and 51°C-105°C respectively.

Isolation of thermophilic bacterial isolates

Tributyrin medium was selected for the
isolation of bacterial isolates as maximum growth
0.D. of 1.2 was observed using this medium. Forty
two thermophilic bacterial isolates were isolated
by using tributyrin medium at 60°C for 24 hours
from water and soil samples whereas no isolate
was isolated from pebble and rock matting samples.
The 42 thermophilic bacterial isolates were
identified by their ability of formation of zone of
clearance on the tributyrin medium [Fig.2]
Quantitative screening of thermostable lipase
activity

Quantitative screening study showed
that thermostable activity of 42 isolates were varied
from 0.082 U/ml to 4.83U/ml after 24 hrs and 0.020
to 1.56 U/ml after 48 hrs of incubation. Bacterial
isolate MBW2 was found to show maximum

Table 1. Partial purification of thermostable lipase from Aneurinibacillus thermoaerophilus strain MBW2

Steps Total enzyme  Total soluble  Specific activity Fold Percent
activity (U) protein (mg) (U/mg protein)  purification yield
Crude extract 546 717 0.76 1.0 100
Ammonium sulphate precipitation 289.5 3254 0.89 1.17 53.02
Gel filtration chromatography 145.06 120.88 1.2 1.57 26.56
Ion exchange chromatography 75 32 2.34 3.07 13.73
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extracellular thermostable lipase activity of4.83 U/
ml after 24 hrs of incubation and 1.56 U/ml after 48
hrs. Therefore, MBW?2 was selected [Fig.3] further
for morphological, biochemical and molecular
characterization.

Manikaran Vashisht

Tattapani

Khirganga

Fig.1. Selected four hot springs

Fig. 2. Zone of clearance around colonies on tributyrin
agar medium
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Morphological and biochemical characterization

The MBW?2 bacterial isolate was found
to be creamish in colour, 2.20 mm in colony size
and irregular in texture. Microscopic study
revealed it a gram positive, single, rod shaped
bacteria with spore formation ability. The strain
was found to give negative results in reactions
with oxidase, urease, indole, VP and lactose
fermentation. Positive results were recorded for
catalase, methyl-red, citrate and fermentation of
glucose and sucrose.
Molecular characterization
16S rrna gene amplification

The DNA sample extracted from selected
isolate was selectively amplified using PCR
technology. After amplification, an amplicon of a
size i.e. of 1250 bp was obtained. This amplified
DNA was eluted and sequenced.

Fig. 3. Selected MBW?2 bacterial isolate

J PURE APPL MICROBIO, 10(2), JUNE 2016.
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In silico analysis

BLAST results of 16S rrna gene sequence
of MBW?2 was found to show maximum homology
(99%) with Aneurinibacillus thermoaerophilus
strain L.420-91, ribosomal RNA, partial sequence
with accession number NR_029303.1. Phylogenetic
tree also declared the MBW?2 bacterial isolate as
Aneurinibacillus thermoaerophilus as the isolate
MBW?2 clustered closely with Aneurinibacillus
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thermoaerophilus strain L420-91 (NR_029303.1)
with boot strap value of 100 [Fig. 4]. Thus the
bacterial isolate MBW2 was identified as
Aneurinibacillus thermoaerophilus strain
MBW?2.This isolate was isolated from Manikaran
hot spring. The sequence has been submitted to
NCBI and has been assigned with the accession
no. of KF93886.
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Optimization of culture conditions

The selected bacteria was found to show
a maximum growth OD of2.46 at a wavelength of
540 nm and maximum enzyme activity of 2.44 U/ml
using tributyrin broth (Fig.5) . It has been observed
that bacterial growth increased exponentially
depicting an OD of 0.136 at a wavelength of 540
nm after first 24 hrs and then it enhanced up to 48
hrs, thereafter it declined up to 120 hrs (Fig.6).
Maximum enzyme activity of 4.83 U/ml was
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produced after 24 hrs of incubation followed by a
sharp decline up to 120 hrs. A pH of 7 was observed
optimum for both, best growth as well as maximum
lipase activity (Fig.7).

The growth was found to increase with
increase in temperature up to 60°C and then a
steady decrease was observed till 70°C however
maximum thermostable lipase activity was
observed to increase with increasing temperature
from 40°-60°C showing maximum enzyme activity
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of 4.81 U/ml at 60°C temperature and then after
enzyme activity (Fig.7) was decreased at 70°C.
Thus the optimum incubation temperature selected
for maximum growth and thermostable lipase
activity was 60°C.
Production and partial purification

1 % primary inoculum size was used to
inoculate tributyrin broth at pH: 7.0 at 60°C for 24
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hrs of incubation time. This extracellular
thermostable lipase was purified to homogeneity
by ammonium sulphate precipitation, sephadex G-
100 column chromatography and ion exchange
chromatography with a total yield of 13.73% and
3.07 fold purification (Table-1). The pool of the
thermostable lipase of last purification step
produced a single protein band in SDS-PAGE with
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arelative molecular mass 0f42.5 KDa (Fig. 9). was found to increase from 40°C up to 60°C. At
Thermostability characterization 60°C the activity was maximum. After that the

Thermostability of the partially purified activity was found to decrease and becomes zero
enzyme was studied at different temperature  at90°C (Fig.10)
ranging from 40°C to 100°C. The enzyme activity
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Protein marker

Fig. 9. SDS-PAGE of thermostable lipase from the
Aneurinibacillus ~ thermoaerophilus strain MBW2
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The stability of biocatalysts is an
important criterion when dealing with bioprocesses
at high temperature for sustainable operation.
Enzyme stability is dictated by its three dimensional
configuration, which in turn is determined by
genetic and environmental factors'®. Therefore,
thermophilic microorganisms unequivocally
represent a valuable source of highly thermostable
enzymes, with numerous advantages towards
biotechnological applications due to their overall
inherent stability and high reaction rates at
elevated temperatures'”'¥. Among them, lipases,
the enzymes that catalyze both the synthesis and
hydrolysis of long chain fatty acid esters
(depending on water availability), constitute one
ofthe most versatile and widely used biocatalytical
group®. The importance of thermostable lipases
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Fig.10. Effect of temperatures on stability of enzyme
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1 2 3

for different applications has been growing
rapidly?*?!. They are used in numerous diverse
biotechnological applications ranging from
biodiesel and biopolymers production to the
synthesis of the chemicals for medical,
agrochemical, and cosmetic applications >'°. Due
to this fact, novel thermostable lipases are in
continuous demand for commercial applications
especially in detergent, food, pulp and paper
industries®. As a result, several thermophilic
microbial strains able to produce thermostable
lipases have been isolated® and the corresponding
enzymes have been purified either from the wild-
type culture supernatants®* or following cloning
and expression in mesophilic hosts***.

In the present study, 42 putative
thermostable lipase producing thermophilic
bacterial isolates from four hot water springs were
isolated using tributyrin medium based on the
ability of formation of zone of clearance. Similar
reports of use of tributyrin medium as isolation
medium for lipase producing bacteria have been
reported?627-282%:3_ The 42 putative lipase producing
bacterial isolates were quantitatively screened for
determining the maximum enzyme activity showing
bacterial isolate by using pNP-laurate as substrate
for enzyme activity. The MBW?2 bacterial isolate
was reported to show maximum lipase activity of
4.83 U/ml after 24 hrs, was selected for
morphological, biochemical and molecular
characterization. Similar studies of use of pNP-
laurate as substrate for enzyme assay has also been
reported?’-?3%31, However, other substrates like p-
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nitrophenylpalmitate (p-NPP) and olive oil have
also been used by many researchers for assay of
lipase enzyme activity30,*>*3**, In silico molecular
analysis of 16S rDNA of the isolate indicated the
similarity of MBW?2 isolate to Aneurinibacillus
thermoaerophilus strain L420-91. Thus MBW2
isolate was identified as Aneurinibacillus
thermoaerophilus strain MBW2. Survey of the
literature revealed few reports on thermostable
lipase produced by A. thermoaerophilus®-6*7,
Optimization of various culture conditions revealed
tributyrin medium as optimum medium, 24 hrs as
optimum period of incubation, neutral pH of 7 as
optimum pH and temperature of 60°C as optimum
temperature for production of thermostable lipase.
The lipase was patially purified by ammonium
sulphate precipitation technique, gel filteration
chromatography and ion  exchange
chromatography to 3.07 fold with 13.73 % protein
recovery. However, Masomian et al., 2013 purified
a thermostable lipase from Aneurinibacillus
thermoaerophilus strain HZ to 15.62 fold
purification with 19.69% yield*’. SDS-PAGE revealed
that this purified thermostable lipase possessed a
molecular weight 0f42.5 KDa. A lipase of43 KDa
has been reported by Hamid et al., 2009 from
Bacillus sp strain 42*. Similarly a lipase of 40 kDa
has been reported by Tan et al., 2014 from
recombinant Escherichia coli BL21%'.

CONCLUSION

In the present study, a thermophilic
bacteria producing thermostable lipase was
isolated from Manikaran thermal spring, where
water was at a temperature of 105°C and pH: 6.0.
This bacteria was identified as Aneurinibacillus
thermoaerophilus strain MBW2 after
morphological, biochemical and molecular
characterization by 16S rDNA technology.
Extracellular thermostable lipase enzyme activity
of 4.83 U/ml was found to be significant and after
purification its molecular weight was determined
to be 42.5 kDa. The lipase from this thermophilic
bacteria revealed exceptional thermostability with
high optimum activity temperatures, thus
representing very promising candidate enzymes
for a variety of high temperature industrial lipolytic
applications. Such an endeavor would probably
require their efficient cloning and overexpression
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in mesophilic hosts, even though that for some of
the strains lipase production was at relatively high
levels compared to other wild-type thermophilic
bacterial strains.
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