Growth Improvement of Rain Tree (*Albizia saman* Jacq. Merr) Seedlings under Elevated Concentration of Carbon Dioxide (CO₂)

F. Fathurrahman^{1,4*}, M.S. Nizam^{2,3}, W.A. Wan Juliana², Febri Doni¹ and C.M.Z. Che Radziah¹

¹School of Biosciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

²School of Environmental and Natural Resource Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

³Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

⁴Department of Agrotechnology, Faculty of Agriculture,
Universitas Islam Riau, Pekanbaru, 28284 Indonesia.

(Received: 09 July 2016; accepted: 10 September 2016)

A study was conducted to determine the growth effects of rain tree (Albizia saman Jacq. Merr) seedlings under elevated concentration of carbon dioxide (CO2) in an automated greenhouse system. The CO₂ was injected for two hours daily at 9 am-11 am with mean concentration of 800 µmol mol 1. For control trial, seedlings were placed in another greenhouse with mean ambient CO₂ concentration of 400 \pm 50 μ mol mol⁻¹. A completely randomized block design was used in this study, and growth observations were made in every 30 days for duration of 120 days. The results showed that almost all parameters observed for the seedling growth under elevated and ambient concentrations were significant. Concentrations of chlorophyll b in leaves of seedlings exposed for 30 days and 60 days at elevated CO, were 941.28 ppm and 993.56 ppm, compared to 492.06 ppm and 635 ppm at ambient CO2. The chlorophyll b content of the leaves at 90 days of ambient CO, was significantly higher (688.51 ppm) compared to the leaves exposed to the elevated CO₂ with chlorophyll b content of 276.23 ppm. Moreover, the roots dry weight at ambient CO2 indicated an average of 9.70 gram, while at elevated CO2, the dry weight of plant roots is higher up to 38.65% of 13.45 gram. Root volume at ambient CO showed an average volume of 40.36 ml³, while at elevated CO₂ the volume increased to 90.33 ml³ (up 123.81%). The results of this study indicate that the rain tree seedlings growth conditions were improved under the elevated CO, concentration, which reflect the efficiency in the use of CO₂ and water for photosynthesis process.

Keywords: Elevated CO₂, rain tree, growth, chlorophyll.

Global climate change shows various changes on climate parameters that include rising of atmospheric temperatures, melting ice caps in the poles, irregular seasonal changes of air and soil moisture (IPCC, 2013a). Changes of moisture in soil might affect the growth of plants and crops. The increase of ${\rm CO_2}$ concentration in the

atmosphere which is the main cause of climate change, may inhibit or stimulate the growth and production of plants. Previous research indicated that increased CO₂ concentrations in a controlled environment such as in greenhouses, had increased the yield on C₃ plants (17% -29%) and C₄ plants (6% - 10%) (Kimball, 1983; Baker and Allen, 1993). However, the low CO₂ concentration would not ensure lower water usage in the field, where the canopy size, structure, and microclimate would also regulate the use of water (Meinzer *et al.*, 1997).

^{*} To whom all correspondence should be addressed. E-mail: fathur@siswa.ukm.edu.my

The relatively low usage of water is not necessarily led to increased growth and production, as the soils are in a moist state. In some experiments, the addition of CO₂ caused a relatively small increase in growth and production of C₂ soybean (Glycine max), rice (Oryza sativa) and wheat (Triticum aestivum) under the free-air CO₂ enrichment (FACE) system (Ainsworth and Long, 2005). Improved process of photosynthesis with increasing concentrations of CO, to enhance the growth of many crops has been reported (Calver, 1972; Madsen, 1976; Jacob et al., 1995; Ohyama, et al., 2005; Sanchez et al., 2005; Thongbai et al., 2010). Chlorophyll is a photosynthetic pigment and plays an important role in the absorption of light energy during the process of photosynthesis. Several studies have demonstrated that chlorophyll content is positively correlated with the rate of photosynthesis (Thomas et al., 2005; Peng et al., 2008)

Albizia saman Jacq.Merr also called as "rain tree" because of its canopy that easily releases the rain water to the soil. Human activities directly the carbon cycleeither by adding more CO₂ into the atmosphere or to eliminate sources of carbon stocks, such as forests. Efforts should be done to reduce greenhouse gas emissions including forest management and non-agricultural land protection that has acted as a net absorber of CO₂, which means that much more CO₂ absorbed from atmospher, and stored in a plant, rather than being released (Dahlan, 2004). The investigations will be carried out to understand the mechanisms of rain tree with respect to its physiological and development of correlation with the ambient CO, and elevated CO₂ condition. The methods used in this study involves planting plants rain tree with two models namely ambient CO, planting in the greenhouse and elevated CO₂ in the greenhouse method. The study will run phenotipe morphological traits such as plant height, number of leaves, leaf area, root volume, stem loop and biomass. This research also aimed to study the physiology of rain tree by determining the chlorophyll content from leaves by ages.

MATERIALS AND METHODS

Seedlings preparation and growth measurement

Sixty rain tree (Albizia saman Jacq.Merr)

seedlings of one week old were grown in polybags (25 cm diameter x 30 cm height) with growing medium of topsoil podzolic type that was mixed with organic fertilizer at a ratio of 4:1. The NPK fertilizer (15:15:15) was applied at a low dose of 5 g/polybag/month and seedlings were sufficiently watered for its growth. Thirty seedlings were exposed to elevated CO₂ concentration of 800 µmol mol-1 in an automated CO₂ glasshouse system. These seedlings were exposed for two hours at 9-11 am daily where photosynthesis is anticipated to be optimum for control trial experiment, similar numbers of 30 seedlings of the same age were exposed to ambient CO₂outside of the glasshouse with ambient concentration of 400±50 mol mol⁻¹. The first observation was made after 14 days of treatment, and subsequent observations were recorded weekly for a period of 16 weeks (4 months). Several plant growth parameters that were measured and counted include plant height (cm), number of branches, and number of leaves, whilst the diameters of stems were measured at the base of the stems using a caliper.

Chlorophyll Concentration, Fresh and Dry Weight, and Root Volume

Determination of chlorophyll concentration was conducted using standard procedure by the International Rice Research Institute IRRI (Cock and Gomez, 1976), with modifications by Nurdin et al. (2009) on reduction of the acetone volume.0.1 g of rain tree leaves were chopped into small pieces(about 2 mm), and the leaves were put into a test tube, after which 20 ml80% acetone was added into the test tube. The mixture was homogenized by a shaker, and it was then incubated in the dark for 48 hours. Concentrations of chlorophyll a and chlorophyll b were analyzed using a spectrophotometer at the wavelength » of 663 nm and 645 nm, respectively. The chlorophyll concentrations were calculated using (Arnon, 1949); Mac Kinney, 1941) equation as follows:

Fresh and dry weights of the seedlings were measured using a digital scale, of which the dry weight was obtained after the samples were dried in the oven at 65°C for seven days.Root volume was measured to determine the root

growths of the seedlings. Seedling roots were put into a measuring cup with half-filled of water, and the volume difference before and after the roots were put into the cup was recorded.

Statistical analysis

All data were statistically analyzed using one way Analysis of Variance (ANOVA). Mean Separation was carried out to determine significance using the Duncan's Multiple Range Test (DMRT) at p<0.05.

RESULTS AND DISCUSSION

Seedlings preparation and growth measurement

Seedlings growth parameters (plant height, number of branches and leaves, stem diameter between treatments of elevated and ambient CO₂ displayed various responses depending on number of days of treatments. Observations on plant height and number of branches showed no significant difference between

the treatments after 30-60 days of exposure. Subsequent observation after 90-120 days of treatments revealed that the mean plant height exposed to high CO₂ differed significantly compared to the mean height of ambient concentration (Table 1).At 120 days of exposure, the mean height of plants under elevated CO, concentration was 196.02±15.8 cm, whereas the plants under ambient CO₂ concentration showed mean height of 173.16±10.90 cm. Likewise, after 120 days of exposure to elevated CO₂, the number of branches of seedlings was significantly different compared to ambient, of which the former indicated mean number of 36.82 ± 2.50 whilst the latter of 35.22 ± 2.10 . Leaves number of the seedlings exhibited significant differences between treatments at 30 days and 120 days of exposure, whereby 1360.90±171.16 leaf sheets/plants were produced at 120 days under the elevated CO₂, whilst 1078.80±119.16 sheets/plants were of ambient CO₂. As for the stem diameter, the stems of plant sunder

Table 1. Growth parameters subjected to different CO₂ concentrations of rain tree (Albizia saman Jacq. Merr)

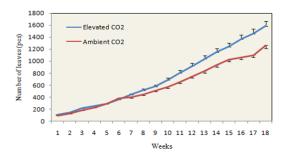
Measurement	CO2 concentration (ppm)								
	30 Days		60 Days		90 Days		120 Days		
	Elevated CO ₂	Ambient CO ₂	Elevated CO ₂	Ambient CO ₂	Elevated CO ₂	Ambient CO ₂	Elevated CO ₂	Ambient CO_2	
Plant height	45.41± 13.9	45.63± 13.03	92.89± 12.7	95.62± 13.17	175.25± 34.1a	142.5± 17.4 ^b	196.02± 15.8 a	173.16± 10.9 b	
Number of	12.66±	12.21±	19.94±	20.39±	28.13±	27.78±	$36.82 \pm$	$35.22 \pm$	
branches	2.0	2.6	2.2	1.6	2.8 a	2.6 b	2.5 a	2.1 b	
Number of	$182.38 \pm$	$160.28 \pm$	$438.7 \pm$	$408.55 \pm$	$862.45 \pm$	$703.19 \pm$	$1360.9 \pm$	$1078.8 \pm$	
leaves	63.8 a	59.8 ^ь	115.8	80.0	149.5	115.5	171.16 a	119.16 b	
Diameter of	$5.38 \pm$	$4.68 \pm$	$11.37 \pm$	$8.72\pm$	$16.33 \pm$	$13.24\pm$	$20.49\pm$	$16.17 \pm$	
stems	1.3	0.7	2.1 a	1.7 b	1.3	1.0	1.5 a	0.8 b	

Note: Mean \pm standard error (SE) followed by different letter of the same days of treatment is significant tested using Duncan multiple range test at p<0.05

Table 2. Responses of fresh weigh, dry weigh, fresh weigh roots, dry weigh roots and roots volume of rain tree (*Albizia saman* Jacq. Merr) to elevated CO₂ and ambient CO₂ conditions

Treatment	Fresh weigh (gram)	Dry weigh (gram)	Fresh weigh roots (gram)	Dry weigh roots (gram)	Roots volume (ml³)
Elevated CO ₂ Ambient CO ₂	647.02 ±32.31 ^a 368.60±73.66 ^b	191.66±9.13 ^a 130.40±6.23 ^b	69.10±1.42 ^a 40.03±1.01 ^b	13.45±0.49 ^a 9.70±0.51 ^b	90.33±1.05 ^a 40. 36±1.10 ^b

Note: Mean \pm standard error (SE) followed by different letter of the same column of treatment is significant tested using Duncan multiple range test at p<0.05


Table 3. Comparison concentration (ppm) of Chlorophyll a and b rain tree (*Albizia saman* Jacq.Merr) age leaves of 30, 60 and 90 days respectively

Measurements	30 Days		Ages 60 Da		90 Days	
	Chlorophyll a	Chlorophyll b	Chlorophyll a	Chlorophyll b	Chlorophyll a Chlorophyll b	
Elevate CO ₂ Ambient CO ₂					917.1±0.66 ^b 275.5 ±1.69 ^b 982.3±11.23 ^a 493.9±4.19 ^a	

Note: Mean \pm standard error (SE) followed by different letter of the same days of treatment is significant tested using Duncan multiple range test at p<0.05

elevated CO₂ indicated larger in size compared to the plants at ambient CO₂. The measured there significant diameter stems where at elevated CO₂ produced an average age of 60 days of exposure have diameter 11.37±0.92 mm, while ambient CO₂ averaged of only 8.72±0.77 mm. However at age at 90 days of exposure, there was no difference. While age of 120 days of exposure stems diameter growth

Fig. 1. Comparative responses from elevated CO₂ and Ambient CO₂ of average height (cm) rain tree (*Albizia saman Jacq.Merr*)

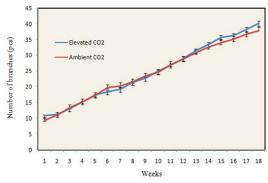
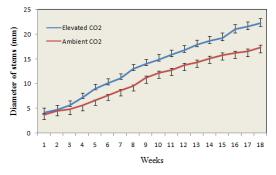


Fig. 3. Comparative responses from elevated CO_2 and Ambient CO_2 of the number of leaves (pcs) rain tree (*Albizia saman* Jacq.Merr)


J PURE APPL MICROBIO, 10(3), SEPTEMBER 2016.

at elevated CO_2 and ambient CO_2 significant with an averaged at 20.49 \pm 1.5 mm and 16.17 \pm 0.8 mm respectively.

Based on the measurement of raw data, it can be assumed that after 30 days of treatments plants at elevated $\rm CO_2$ concentrations of 800 μ mol mol⁻¹ at two hours per day on morning (9.00-11.00 am) indicated higher $\rm CO_2$ absorption before and after those hours. At that time the photosynthesis

Fig. 2. Comparative responses from elevated CO₂ and Ambient CO₂ of the number of branches (pcs) rain tree (*Albizia saman* Jacq.Merr).

Fig. 4. Comparative responses from elevated CO_2 and ambient CO_2 of the diameter of leaves (mm) rain tree (*Albizia saman* Jacq.Merr)

process went very well and effectively. Photosynthesis process will be gradually slow down until the sunset. The opening and closing of stomata on the leaf surface cells gradually adapted to high concentrations of CO_2 and the water content available within the plant tissue. The age of 120 days of exposure showed four readings in Table 1, and all produce significant observations. It is proven that the longer the plants were exposed to high concentrations of CO_2 , the better the growth rate due to high photosynthetic process thus proving rain tree grow faster at increased CO_2 concentration than at ambient CO_2 conditions.

The growth of plant height at elevated CO₂ and ambient CO₂ data were collected every weeks, starting the second week until week 14, and it shows no significant results. Significant plant height difference can be seen from week 14 and further are shown in Figure 1. Furthermore, significant differences in plant height observed between the treatment of elevated CO₂ and ambient CO₂ observations obtained at weeks 16, 17 and 18. The observations of the weeks was the best compared to observations in the previous weeks.

The result of number of branches of the plant during the first week of treatment was higher in elevated CO₂ compared to ambient CO₂ (Fig 2). Observations at week five to nine of the treatment of elevated CO₂ shows lower plant branches number. Plant branch growth at treatment of elevated CO₂ was higher at weeks 13 until weeks 18. Observations on the average number of leaves shows at the beginning of exposure are relatively similar between elevated CO₂ and ambient CO₂ (Fig. 3). However, from week 6 to week 18, the average number of leaves was higher in the treatment of elevated CO2 compared to ambient CO₂. The diameter of each plants for the treatment of elevated CO₂ shows a quicker increased in size (mm) compared with ambient CO₂ treatment (Fig 4). Over all parameters investigated, stem diameter showed highest difference between elevated CO, and ambient CO₂ treatment. The difference increase vigorously starting from weeks 3 onwards. Meanwhile, other parameter show narrow difference throughout the weeks during experiment. Chlorophyll Concentration, Fresh and Dry

Weight, and Root Volume

The concentrations of chlorophyll *a*in the plant leaves at 30 days, 60 days and 90 days of

elevated CO_2 were 2166.7 ppm, 2256.7 ppm, 917.1 ppm, respectively; with ambient CO_2 indicated concentrations of 1507.8 ppm, 1611.3 ppm and 982.3 ppm at the respective days of treatments (Table 3). It is apparent that the highest concentration of chlorophyll a was shown by plant leaves that were exposed to elevated CO_2 for 60 days, while the lowest concentration was in leaves of 90 days. Subsequently, concentrations of chlorophyll a in all plants of both treatments. Overall, the chlorophyll a and b contents for all plants were significantly higher in elevated CO_2 compared to the ambient condition (Figure 5).

Observation of the fresh weigh and dry weight, fresh and dry root weight and volume of rain tree plant after Duncant further test statistic indicates that there is significant difference for all parameters. The rain tree fresh weight is 75.53% higher in elevated CO₂ at 647.02 grams versus 368.60 grams at ambient CO₂ (Table 2). The weight of the plants are 46.97% higher in elevated CO, which is 191.66 grams versus 130.40 grams at ambient CO₂. The mean fresh weigh rain tree root at ambient CO, averaged at 40.03 grams, while the elevated CO₂ increased to 69.10 grams (up 72.62%). The dry root weigh at ambient CO₂ average 9.70 gram (dry weight) while at elevated CO₂ increased to 13.45 grams (up 38.65%). For root volume at ambient CO₂ averaged a volume of 40.36 ml³ while at elevated CO₂ increased to 90.33 ml³ rose to 123.81%. The highest percentage increase in growth is the root volume, followed by fresh weight, root fresh weight, dry weight and root dry weight respectively.

The results are in line with reports of Rogers et al. (1992) and Bowes (1993) who stated that elevated CO₂ might cause plants to produce more mesophyll cells and chloroplasts, leading to higher chlorophyll content. High chlorophyll content correlates with high nitrogen content, which would then reflect high protein contentin the plant cells. Bacerra et al. (1995) and Bui et al. (1995) reported duckweed (Lemna sp), has a high protein content, so many were used as cattle feed and poultry. The protein content in the leaves of ginger showed significant correlation with carbohydrates and chlorophyll a and b (Rai and Das 2010).

High carbon concentrations may increase

the length, diameter and number of roots (Lee-Ho et al. 2007) and stimulates lateral root production in plants grown under elevated CO₂ (Pritchard and Rogers 2000). It also changes the location of biomass from leaves to roots may occur under CO₂ enrichment (Stulen and Hertog 1993). Results of research Drake, et al. (1997) stated that elevated CO₂ increases photosynthesis carboxylation rate of Rubisco and competitively inhibiting the oxygenation of ribulose-1,5-bisphosphate (RuBP).

CONCLUSION

From this study, elevated CO₂ concentration affects the growth of rain tree seedlings which resulted in faster plant gowth, higher chlorophyll content and biomass content, increased root mass and volume, as compared to seedlings that were exposed at ambient CO₂. Optimization of acquisition and accumulation of CO₂ that is greater than the primary photosynthetic process will be beneficial to vegetative growth rain tree.

ACKNOWLEDGEMENTS

This study was funded by Universiti Kebangsaan Malaysia under Arus Perdana Research Grant AP-2013-003.

REFERENCES

- 1. Ainsworth, E.A., Serbin, S.P., Skoneczka, J.A., and Towns, P.A. Using leaf optical properties to detect ozone effects on foliar biochemistry. *Photosynthesis Research.*, 2014; **119**: 65-76.
- Arnon D.I..Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. *Plant Physiology.*, 1949; 24: 1-15.
- Baker, J.T. and Allen L.H. JR. Contrasting crop species responses to CO₂ and temperature: rice, soybean and citrus. *Vegetatio.*, 1993; 104(105):239–260.
- 4. Becerra, M., Preston, T.R. and Ogle B. Effect of Replacing Whole Boiled Soybeans with Duckweed (*Lemna sp.*) in The Diets of Growing Ducks. Livestock Research for Rural Development., 1995; http://www.fao.org/ag/aga/agap/frg.
- Bowes, G., Facing the inevitable: plants and increasing atmospheric CO₂. *Annu Rev Plant Physiol Plant Mol. Biol.* 1993; 44:309–332.

- Bui, X.M., Ogle, B. and Prestont.R. .Use Of Duckweed (*Lemna* sp.) as Replacement for Soya Bean Meal in a Basal Diet of Broken Rice for Fattening Ducks. Livestock Research for Rural Development., 1995; http://www.fao.org/ag/aga/ agap/frg.
- 7. Calver, A. Effects of day and night tempratures and carbon dioxide enrichment on yield of glasshouse tomatoes. J. Hortic. Sci. 47: 231-247. components. *Plant Cell Environ.*, 1972; **20**: 1242–1252.
- Dahlan, E.N. Building a garden city (garden city) City Forest Nuanced. IPB Press., . 2004; 226 pages.
- Drake, B.G., Gonzàlez-Meler M.A. and Long S.P. More efficient plants: aconsequence of rising atmospheric CO₂. Annual Review of Plant Physiologyand Plant Molecular Biology., 1997; 48: 609–639.
- 10. IPCC. Annex III: Glossary [Planton, S. (ed.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013a.; pp. 1447–1466, doi:10.1017/CBO9781107415324.031.
- Johnson, N. and Markus, R. Root Damage by Insects Reverses the Effects of Elevated Atmospheric CO₂ on Eucalypt Seedlings Scott. *Plos One.*, 2013; 8 (11) pp: 1-6.
- Katilyn, V., Beidler, Benton, N.T., Allan, E.S., Emily, R.C., Marcos, S. and Seth G.P. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. *New Phytologist.*, 2015; 1153 (205) pp: 1153–1163.
- Kimbal, B.A.. Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis of 430 Prior Observations. Agron. J., 1983; 75:779-788.
- Mac Kinney G. Absorption of light by chlorophyll solutions. *J Biol Chem.*, 1941;**140**: 315-322.
- Madsen, E. Effects of CO₂ consentration on morphological histological, cytological and physiological processes in tomato plants. State seed testing station, Lyng by, 1976; Denmark,
- F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier J. and Jackson P. Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components. *Plant Cell Environ.*, 1997;. 20:242–252.

- 17. Nurdin, Clara M., Kusharto, I., Tanziha, Januwati, M. Chlorophyll level of various green leaves and copper-chlorophyll derivatives and its charaterization. *Journal of Nutrition and Food.*, 2009; **4**(1): 13 19.
- Ohyama, K., Kozai T., Ishigami Y. and Ochi Y.A. CO₂ control system for agreenhouse with a high ventilated rate. *Acta Hortic.*, 2005; 691: 649-654.
- Pritchard, S.G. and Rogers, H.H. Spatial and temporal deployment of crop roots in CO₂enriched environments. *New Phytol.*, 2000; 147:55–71.
- Rai, S., Das, A. B. and Das P. Variations in chlorophylls, carotenoids, protein, and secondary metabolites amongst ginger (*Zingiber officinale* Rose.) Cultivars and their association with rhizome yield 0671., 2010; doi:10.1080/ 01140671. 1999.9514083.
- Rebecca, A., Slattery and Donald R. Ort. Photosynthetic Energy Conversion Efficiency: Setting a Baseline for Gauging Future Improvements in Important Food and Biofuel Crops1. Plant Physiology., 2015; 168, pp. 383–392.
- Sanchez-Guerrero, M.C., Lorenzo P., Medrano E., Castillan., Soriano, T. dan Baille A., Effect of variable CO₂ enrichment on greenhouse production in mild winter climates. *Agric. Forest Meteorol.*, 2005; 132: 244-252.
- 23. Song, C., Danying, W., Chunmei, X., Cheng,

- I.J., Xiaoguo, Z., Xia Z., Xiufu Z.and Bhagirath S.C. Responses of Super Rice (Oryza sativa L.) to Different Planting Methods for Grain Yield and Nitrogen-Use Efficiency in the Single Cropping Season. *Plos One.*, 2014; **9**(8).
- Thomas, J.A., Jeffrey, A.C., Atsuko, K. and David M.K.. Regulating the proton budget of higher plant photosynthesis. *Proc. Natl. Acad. Sci USA.*, 2005; 102: 9709–9713.
- Thongbai, P., Kozai T. and Ohyama K. CO₂ and air circulation effects on photosynthesis and transpiration of tomato seedlings. *Scientia Horticulturae.*, 2010; 126: 338-344.
- Stephen, A. Prior, Brett, G., Christopher, Marble, S., Hugo, H. R. Charles, H. and Gilliam H. A. A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for *Horticulture*. *Hort*., 2011; 46 (2) pp: 158-162.
- Takushi, H., Daisuke, S., Mikiko, K., Shigeru, S., Shuichi, Y., Hitoshi, S., Ichiro and T., Noguchi. High CO2 Triggers Preferential Root Growth of Arabidopsis thaliana Via Two Distinct Systems Under Low pH and Low N Stresses. *Plant Cell Physiol.*, 2014; 269, 55(2) pp: 269–280, doi:10.1093/pcp/pcu001.
- Yoshida, S., Forno, D.A., Cock, J.H. and Gomez K.A. Laboratory manual for physiological studies of rice. *The international rice research* institute. Los Banos, Philippines., 1976; 83 p.