The Application of MALDI-TOF MS for Identification of Bacteria from Consumer Goods Industries

Lei Zhai^{1#}, Yafang Lin^{2#}, Su Yao¹, Chongtao Ge², Youqiang Xu¹, Yuanyuan Ge¹, Yanhua Cao¹, Xiaoli Tang¹, Xin Zhang¹, Jeffrey K. Domsic³, Jiquan Liu⁴ and Chi Cheng^{1*}

¹China National Research Institute of Food and Fermentation Industries, China Center of Industrial Culture Collection, Beijing 100015, China. ²Procter & Gamble Technologies (Beijing) Ltd, Beijing 101312, China. ³Procter & Gamble Mason Business Center, Mason, Ohio, 45040, United States of America. ⁴Procter & Gamble International Operations SA Singapore Branch, 70 Biopolis Street 138547, Singapore.

https://doi.org/10.22207/JPAM.10.3.04

(Received: 06 April 2016; accepted: 19 May 2016)

Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized microorganism identification. Studies have applied this technology for identification of clinical isolates and verified its speed, high-throughput and cost effectiveness. Species from industries might be different with those of clinical isolates, and identifications of industrial bacteria are rarely reported. In this study, we applied this technology for industrial bacteria identification. We collected 152 strains from consumer goods industries, which scored lower than 2.0 (unreliable at species level). The strains were further analyzed by 16S rRNA and housekeeping gene sequence analysis, and physiological and biochemical analysis where necessary. The accuracy of MALDI-TOF MS identification highly depends on the scale of the spectra database. By enriching the database with the obtained mass spectrometry data (spectra and identifications), industrial isolate identifications can be improved by MALDI-TOF MS. This will enhance the robustness of this system beyond its current exceptional performance that includes use for in vitro diagnostics.

Keywords: MALDI-TOF MS; Consumer goods; Bacteria; Identification.

Bacterial identification is routinely carried out by 16S rRNA gene sequence analysis, supplemented with housekeeping gene sequence analysis and phenotypic characteristics such as colony morphology, microbial physiology and biochemical analysis¹⁴. Recently, bacterial isolates have also been identified by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), which offers a time-saving, high throughput and cost effective alternative^{5, 22}. MALDI-TOF MS has been routinely

Most studies adopting MALDI-TOF MS for bacterial identification have focused on clinical bacterial isolates9. Food, cosmetic and similar industries also require fast, stable and accurate microbial identification methods. However, industrial applications of MALDI-TOF MS, such as the differentiation of industrial Saccharomyces cerevisiae strains, are rarely reported¹⁹. Therefore,

E-mail: cicc science@163.com

used since the mid-1990s and was later verified in the identification of clinical microbial isolates^{7,9,13,} ^{28, 31}. Unlike molecular biological methods such as fluorescence in situ hybridization (FISH) and realtime polymerase chain reaction (RT-PCR), MALDI-TOF MS requires no species-specific probes, considerably reducing the identification cost^{11, 29}.

^{*} To whom all correspondence should be addressed. Fax Num.: +86 10 53218307;

to better meet the requirements of industrial microbial identification, an efficient way is to accumulate more information on industrial isolates in the spectrum database. We applied MALDI-TOF MS (Bruker Daltonics, Billerica, MA, USA) for identification of hundreds of strains from fastmoving consumer goods (FMCG) industries, and found 152 strains with scores lower than 2.0, which were recognized as not reliable at species level. In this study, the 152 strains were further analyzed by the reference methods, including molecular biological analysis (16S rRNA gene sequence analysis and housekeeping gene sequence analysis), and physiological and biochemical analysis if necessary. The MALDI-TOF MS results were paralleled with those of the reference method. Data supplementation would significantly expand the identification accuracy and applicability of MALDI-TOF MS and facilitate its use in the FMCG industries.

MATERIALS AND METHODS

Bacterial strains

This study analyzed 152 bacterial strains. Twenty-seven strains were purchased from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany). DSMZ strains were collected according to the common bacteria related to FMCG industries counted by CICC (China Center of Industrial Culture Collection, Beijing, China), and not present in the commercial Bruker BDAL Biotyper database. The rest 125 strains, whose MALDI-TOF MS scores were lower than 2.0, were isolated from FMCG industries by CICC.

MALDI-TOF MS operation and identification

The isolates were recovered on TSA plates, and single colonies were picked for mass spectral measurements using a Bruker Microflex LT MALDI-TOF MS platform with the Bruker BDAL MSP database (Bruker Daltonics, Billerica, MA, USA) linked to FlexControl software (version 4.0). The colonies were prepared according to the manufacturers' formic acid extraction instructions. Briefly, one colony was picked using a sterile disposable plastic loop and mixed with 1.2 ml of 75% ethanol (v/v) in an Eppendorf tube. The mixture was centrifuged at $13,000 \times g$ for 2 min and the supernatant was discarded. The pellet was

resuspended in 50 il of 70% formic acid and 50 il acetonitrile, and again centrifuged at $13,000 \times g$ for 2 min. One microliter of the supernatant was pipetted onto the sample loading spot on the stainless steel target plate, and covered with a 1 il-portioned alphacyano-4-hydroxycinnamic acid (HCCA) matrix (Bruker Daltonics, Billerica, MA, USA). Up to 240 spectra per isolate were generated in positive ion linear detection mode. The summed spectra were imported into the integrated MALDI Biotyper software (version 4.0) and analyzed by standard pattern matching with manufacturers' default settings. The spectrum of each isolate was searched in the Biotyper BDAL MSP database, and a reliability score was generated from the similarity measure. Scores were interpreted as not reliable (< 1.7), reliable at the genus level (1.7 d" score < 2.0), or reliable at the species level (e" 2.0). Each colony was analyzed at least 4 times.

One bottle of Bacterial Test Standard (BTS, 40 standard spots, Bruker Daltonics, Billerica, MA, USA) was suspended in 50 il of premixed solvent (50% acetonitrile and 2.5% trifluoroacetic acid). As positive and negative controls in each run, we used 1 il of the BTS solution (prepared for loading as stated above) and 1 il of HCCA matrix alone. All chemicals were purchased from Sigma–Aldrich (Steinheim, Germany), unless stated otherwise. The standard protocol used in the work yielded quality spectra with good resolution and spectral information, and the BTS results verifying correct operation of the system for all samples analyzed.

16S rRNA gene sequence analysis

The genome DNA of the bacteria was extracted using a Bacterial Genomic DNA Extraction Kit (Tiangen Biotech, Beijing, China). The 16S rRNA gene was amplified by the primers 27f and 1492r ¹⁵ (Table S1). The PCR products of all tested strains were sequenced in an ABI 3730 DNA analyzer system (ABI, USA). All of the nucleotide sequences were aligned by EzBiocloud (http://ezbiocloud.net/) and searched in the NCBI database using BLASTN (http://blast.ncbi.nlm.nih.gov/Blast).

Housekeeping gene sequence analysis

The housekeeping genes $atpD^4$, $gyrA^6$, $gyrB^{27}$, $rpoB^1$ and tuf^2 were amplified by PCR and sequenced for strain identification. The analysis was identical to the 16S rRNA gene sequence

analysis. The amplification primer pairs for each gene are listed in Table S1.

Physiological and biochemical analysis

Some strains that could not be identified to species level were physiologically and biochemically characterized. The characterizations were performed manually or in an API system (BioMérieux, Paris, France).

RESULTS

Hundreds of strains related to FMCG were analyzed by MALDI-TOF MS, and many of them were well identified. However, 152 strains scored lower than 2.0 were found indicating that these strains were recognized as not reliable at species level. Among these were 78 strains with scores

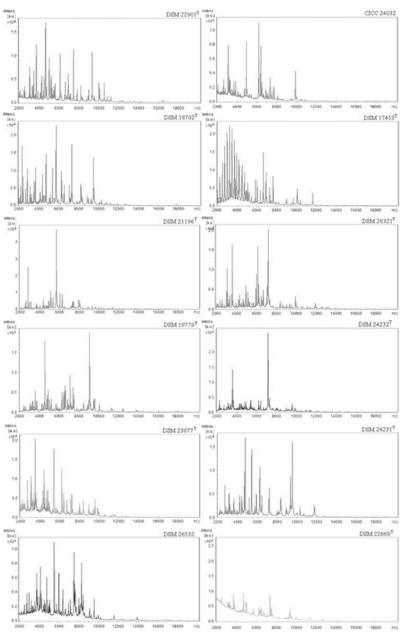


Fig. 1. The frequency of occurrence of the 152 strains

Table 1. Strains did not include in the MS database with MALDI-TOF MS scores < 1.7

יט						
E Strain	Genus/Family	16S rRNA gene sequencing	ac	MALD	MALDI-TOF MS	Remark
Ž APPL M	(Strain number)	Species ID	Level	Species ID	Species Score ID	
CICC 23979	Acinetobacter (2)	Acinetobacter bereziniae	Species		< 1.700	Housekeeping gene $(gyrB)$ analysis
		Acinetobacter indicus	Species	ı	< 1.700	
© CICC 24053	Aeromonas (1)	Aeromonas sp.	Genus	į	< 1.700	New species
	Anaerococcus (1)	Anaerococcus sp.	Genus	ı	< 1.700	New species
	Asaia (1)	Asaia siamensis	Species	į	< 1.700	MS database did not contain the genus
CICC 10075	Bacillus (13)	Bacillus amyloliquefaciens subsp.	Species		< 1.700	Housekeeping gene (gyrA) analysis
B CICC 10079		Bacillus amyloliquefaciens subsp.	Species	ı	< 1.700	Housekeeping gene (gyrB) analysis
		amyloliquefaciens				
CICC 20037		Bacillus amyloliquefaciens subsp.	Species	ı	< 1.700	Housekeeping gene (gyr4) analysis
CICC 10265		Prama am Bacillus amyloliquefaciens subsp.	Species		< 1.700	Housekeeping gene (gyrA) analysis
		plantarum				
CICC 23981		Bacillus amyloliquefaciens subsp.	Species	1	< 1.700	Housekeeping gene (gyrB) analysis
		plantarum				
CICC 23985		Bacillus amyloliquefaciens subsp.	Species	1	< 1.700	Housekeeping gene (gyrB) analysis
		plantarum				
CICC 23987		Bacillus atrophaeus	Species		< 1.700	Housekeeping gene (gyrB) analysis
CICC 23978		Bacillus halosaccharovorans or	Two different	ı.		
			species possible			
		Bacillus niabensis		1	< 1.700	
CICC 24021		Bacillus halosaccharovorans or	Two different	- +	< 1.700	
		Bacillus niabensis	species possible	sible		
DSM 28326^{T}		Bacillus methylotrophicus	Species	į	< 1.700	
$DSM 24771^{T}$		Bacillus oceanisediminis	Species	į	< 1.700	
CICC 24027		Bacillus pumilus	Species	į	< 1.700	
CICC 24023		Bacillus subtilis	Species	1	< 1.700	

J PURE APPL MICROBIO, 10(3), SEPTEMBER 2016.

	New species	New species	Physiological and biochemical analysis	Physiological and biochemical analysis	MS database did not contain the genus		Physiological and biochemical analysis	Physiological and biochemical analysis	Physiological and biochemical analysis		New species; Housekeeping gene		Physiological and biochemical analysis	Housekeeping gene (gyrB) analysis			Housekeeping gene (ηpoB) analysis; MS	database did not contain the genus			MS database did not contain the genus	Physiological and biochemical analysis	Physiological and biochemical analysis	Physiological and biochemical analysis								
< 1.700 < 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700		< 1.700	< 1.700	< 1.700	< 1.700	< 1.700		< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	< 1.700	
1 1	1		1	1			1		,	,	,			1		•	ı		,				1		1			,		1	- tue	ssible
Species Species	Family	Genus	Species	Species	Species	Genus	Species	Species	Species	Species	Genus		Species	Genus	Species	Species	Species		Species	Species	Species	Species	Species	Species	Genus	Genus	Genus	Species	Species	Species	Two different	species possible
Bradyrhizobium elkanii Burkholderia contaminans	Comamonadaceae	Corynebacterium sp.	Delftia lacustris	Dermacoccus profundi	$Domiba cillus\ robiginos us$	Exiguobacterium sp.	Halomonas johnsoniae	Halomonas johnsoniae	Halomonas johnsoniae	Halomonas magadiensis	Halomonas sp.		Halomonas stevensii	Halomonas sp.	Kocuria flava	Kocuria marina	Komagataeibacter saccharivorans		Kytococcus aerolatus	Lactobacillus acetotolerans	Luteococcus peritonei	Lysinibacillus macroides	Lysinibacillus macroides	Lysinibacillus xylanilyticus	Lysinibacillus sp.	Lysinibacillus sp.	Lysinibacillus sp.	Massilia suwonensis	Massilia varians	Methylobacterium hispanicum	Microbacterium esteraromaticum	or Microbacterium
Bradyrhizobium (1) Burkholderia (1)	Comamonadaceae (1)	Corynebacterium (1)	Delftia (1)	Dermacoccus (1)	Domibacillus(1)	Exiguobacterium (1)	Halomonas (7)								Kocuria (2)		Komagataeibacter(1)		Kytococcus (1)	Lactobacillus (1)	Luteococcus(1)	Lysinibacillus(6)						Massilia (2)		Methylobacterium (1)	$\mathit{Microbacterium}\left(1 ight)$	
DSM 11554 ^T DSM 22706 ^T	CICC 24037	CICC 23986	CICC 20570	CICC 23951	CICC 24057	CICC 23781	CICC 11014s	CICC 11015s	CICC 11016s	DSM 15367^{T}	CICC 11012s	(gyrB) analysis	CICC 11013s	CICC 11011s	CICC 24029	CICC 24030	CICC 21102		CICC 23996	CICC 10774	CICC 24005	CICC 23595	CICC 23596	CICC 20858	CICC 10600	CICC 10601	CICC 10602	CICC 23971	DSM 21873^{T}	DSM 16372^{T}	CICC 24058	

J PURE APPL MICROBIO, 10(3), SEPTEMBER 2016.

arabinogalactanolyticum Mycobacterium phocaicum Species - < 1.700	Species		< 1.700	_	Housekeening gene (rnoB) analysis
Mycobacterum phocaicum		Species		< 1./00	Housekeeping gene (rpob)
Mycobacterium phocaicum		Species	1	< 1.700	Housekeeping gene (rpob) analysis
Novosphingobium (2) Novosphingobium panipatense or Two different		Two diffe	rent -	< 1.700	
Novosphingobium mathurense species		species	species possible		
Novosphingobium sp. Genus		Genus	•	< 1.700	New species
Oceanobacillus (1) Oceanobacillus kimchii Species		Species	1	< 1.700	Physiological and biochemical analysis;
MS database did not contain the genus					
Paenibacillus (2) Paenibacillus humicus Species		Species	1	< 1.700	
Paenibacillus hunanensis Species		Species	1	< 1.700	
Pantoea (1) Pantoea sp. Genus		Genus	1	< 1.700	New species
Planomicrobium (1) Planomicrobium sp. Genus		Genus	1	< 1.700	MS database did not contain the genus
Pseudomonas (5) Pseudomonas japonica Species		Species	•	< 1.700	
Pseudomonas kuykendallii Species		Species	•	< 1.700	
Pseudomonas kuykendallii Species		Species	•	< 1.700	
Pseudomonas sp. Genus		Genus	•	< 1.700	New species
Pseudomonas sp. Genus		Genus	1	< 1.700	New species
Pseudoxanthomonas (2) Pseudoxanthomonas sp. Genus		Genus	1	< 1.700	New species
Pseudoxanthomonas sp. Genus		Genus	•	< 1.700	New species
Psychrobacter(3) Psychrobacter faecalis Species		Species	1	< 1.700	
Psychrobacter faecalis or Two different		Two di	fferent -	< 1.700	Housekeeping gene (gyrB) analysis
		species	species possible		
Psychrobacter sanguinis Species		Species	1	< 1.700	
Rhizobium (1) Rhizobium larrymoorei Species		Species	1	< 1.700	
Roseomonas (1) Roseomonas aestuarii Species		Specie	s	< 1.700	
Sphingobium (1) Sphingobium yanoikuyae Species		Specie	s	< 1.700	
Sphingomonas (1) Sphingomonas roseiflava Species		Specie	SS	< 1.700	
Sphingopyxis (1) Sphingopyxis alaskensis Species		Specie	S	< 1.700	
Sporosarcina (1) Sporosarcina luteola Species		Specie	S	< 1.700	
Staphylococcaceae (1) Staphylococcaceae Family		Family		< 1.700	New species
Xanthobacter (1) Xanthobacter flavus Species	S	Species	•	< 1.700	Physiological and biochemical analysis
Zymomonas (2) Zymomonas mobilis Species		Species	1	< 1.700	MS database did not contain the genus
Zymomonas mobilis subsp. mobilis Species		Specie	ı	< 1.700	Housekeeping gene (gyrB) analysis; MS
					database did not contain the genus

Fable 2. Strains did not include in the MS database with MALDI-TOF MS scores ≤ 1.7 .

Strain No.	Genus (Strain number)	16S rRNA gene sequencing Species ID	MALDI-TOF MS Level of ID	Remark Species ID	Score
DSM 22901 ^T CICC 24032 DSM 18702 ^T	Acinetobacter(1) Bacillus(1) Cronobacter(1)	Acinetobacter beijerinckii Bacillus subtilis Cronobacter malonaticus	Species Species Species	Acinetobacter tjernbergiae Bacillus amyloliquefaciens Cronobacter sakazakii	1.816 ± 0.077 1.742 ± 0.022 2.099 ± 0.180
DSM 17453 T	Chryseobacterium (1)	Chryseobacterium taichungense	Species	Chryseobacterium hagamense Chryseobacterium sp.	
DSM 21196 T DSM 26321 T	Halomonas (1) Massilia (1)	Halomonas hamiltonii Massilia oculi	Species Species	Halomonas aquamarina Massilia timonae	1.788 ± 0.062 1.930 ± 0.137
DSM 19778 ¹ DSM 24232 ^T	Ochrobactrum (1) Pantoea (3)	Ochrobactrum cytisi Pantoea brenneri	Species Species	Ochrobactrum sp. Ochrobactrum tritici Pantoea agglomerans	2.121 ± 0.185 2.047 ± 0.095 1.753 ± 0.032
DSM 23077 ^T DSM 24231 ^T		Pantoea eucalypti Pantoea eucrina	Species Species	Pantoea agglomerans Providencia rettgeri	1.819 ± 0.085 1.765 ± 0.038
$\begin{array}{c} \text{DSM 26532} \\ \text{DSM 22668}^{\text{T}} \end{array}$	Pseudomonas (1) Rhizobium (1)	Pseudomonas baetica Rhizobium pusense	Species Species	Pseudomonas koreensis Rhizobium radiobacter	1.721 ± 0.011 1.965 ± 0.106

below 1.7 indicating no reliable identification by MALDI-TOF MS (Table 1). The mass spectra and associated identifications of the 78 strains can be added to expand the MS database for industrial strains identification.

Twelve of these strains yielded different identifications by molecular biological methods and the MALDI-TOF MS analysis (Table 3). For some strains, the scores ranged from 1.7 to greater than 2.0, suggesting low repeatability of MALDI-TOF MS for these strains. The MALDI-TOF MS results and molecular biological identifications of these strains were consistent at the genus level, but mismatched at the species level. The instrument parameters and sample preparation were all carried out by standard protocol, and generated qualified mass spectra (Fig. S1). Therefore, such discrepancies reflect the absence of these species in the MALDI-TOF MS database rather than inaccuracy of MALDI-TOF MS, and highlight the necessity and importance of supplementing the MS database.

Forty-eight of the 152 strains were listed in the MALDI-TOF MS database, of which 21 scored below 1.7 in the MALDI-TOF MS analysis (Table 4). These species were successfully identified by gene sequence and physiological/biochemical analyses, and found in the MALDI-TOF MS database. Highly qualified mass spectra data were obtained based on standard protocol (Fig. S2). The MALDI-TOF MS failure was possibly caused by metabolic and psychological divergence between the present isolates and the bacteria or type strains archived in the database²⁴.

The remaining strains, scoring between 1.7 and 2.0, are listed in Table 5. The strain labeled CICC 24011 was molecularly identified as Acinetobacter parvus but as A. junii by MALDI-TOF MS. As A. parvus and A. junii have not been compared in previous reports, the reason for this misidentification could be sought in future study. The sample strains labeled CICC 23959, CICC 23967, CICC 24012, CICC 24013, CICC 24019, CICC 24024, CICC 24031, CICC 24033, CICC 24036, and CICC 24059 were identified to genus level by molecular biological method and consistent with the results of MALDI-TOF MS. The rest of the strains were identified to species level by molecular biological method while reliable only at the genus level by MALDI-TOF MS, possibly because of the

able 3. Strains included in the MS database with MALDI-TOF MS scores < 1

	Genus (Strain number)	16S rRNA gene sequencing	50	MALDI-TOF MS	OF MS	Remark
		Species ID	Level of ID	Species ID	Score	
CICC 23998	Bacillus (7)	Bacillus circulans	Species	1	< 1.700	
CICC 23977		Bacillus infantis	Species	ı	< 1.700	
CICC 23972		Bacillus licheniformis	Species	1	< 1.700	Housekeeping gene (gyrA) analysis
CICC 23974		Bacillus licheniformis	Species		< 1.700	Housekeeping gene (gyrA) analysis
CICC 24016		Bacillus endophyticus	Species	ı	< 1.700	
CICC 24017		Bacillus subtilis	Species	1	< 1.700	
CICC 24034		Bacillus subtilis	Species	ı	< 1.700	
CICC 23966	Brevibacterium (1)	Brevibacterium sanguinis or	Two different	1	< 1.700	
		Brevibacterium celere	species possible			
CICC 24026	Curtobacterium(1)	Curtobacterium sp.	Genus	ı	< 1.700	
CICC 24018	Dermacoccus (1)	Dermacoccus sp.	Genus	ı	< 1.700	
CICC 24060	Exiguobacterium (3)	Exiguobacterium sp.	Genus	ı	< 1.700	
CICC 24040		Exiguobacterium sp.	Genus	1	< 1.700	
CICC 24022		Exiguobacterium sp.	Genus		< 1.700	
CICC 23952	Kocuria (2)	Kocuria carniphila	Species	ı	< 1.700	Physiological and biochemical
analysis						
CICC 23997		Kocuria rosea or Kocuria polaris or Kocuria himachalensis	Three different species possible	1	< 1.700	
CICC 23990	Micrococcus (2)	Micrococcus lylae	Species	1	< 1.700	
CICC 23993	` '	Micrococcus lylae	Species	1	< 1.700	
CICC 24020	Moraxella(1)	Moraxella osloensis	Species	1	< 1.700	
CICC 24043	Paenibacillus (1)	Paenibacillus lactis	Species	1	< 1.700	
CICC 23976	Staphylococcus (2)	Staphylococcus hominis	Species	1	< 1.700	Housekeeping gene (tut) analysis
CICC 23992		Staphylococcus warneri	Species	1	< 1.700	Housekeeping gene (tuf) analysis

Table 4. Strains included in the MS database with MALDI-TOF MS scores between 1.7 and 2.0

Strain No.	Genus (Strain number)	16S rRNA gene sequencing	uencing	MALDI-TOF MS	IS	Remark
		Species ID	Level of ID	Species ID	Score	
CICC 24011 CICC 23960	A cinetobacter(1) A ureimonas(1)	Acinetobacter parvus Aureimonas altamirensis	Species Species	Acinetobacter junii Aureimonas altamirensis	$\begin{array}{c} 1.822 \pm 0.055 \\ 1.773 \pm 0.037 \end{array}$	Physiological and biochemical
CICC 23949	Bacillus (5)	Bacillus cereus	Species	Bacillus cereus	2.024 ± 0.033	analysis Housekeeping gene (gyrB)
CICC 23954 CICC 23959		Bacillus infantis Bacillus firmus or	Species Two differen	Species <i>Bacillus infantis</i> Two different species possible	1.900 ± 0.015 Bacillus firmus	analysis 1.850 ± 0.086
CICC 24013		Bacillus oceanisediminis Bacillus sp.	Genus	Bacillus pseudomycoides	1.818 ± 0.029	Housekeeping gene (gyrB)
CICC 23950		Bacillus subtilis subsp. subtilis	\$7	Bacillus thuringiensis Bacillus cereus Species	1.754 ± 0.030 1.784 ± 0.029 Bacillus subtilis	analysis 1.754 ± 0.030 1.784 ± 0.029 $Bacillus subtilis 2.040 \pm 0.110 \text{ Housekeeping}$
CICC 23948 CICC 23967 CICC 24019	Kocuria (1) Micrococcus (3)	Kocuria marina Micrococcus sp. Micrococcus sp.	Species Genus Genus		1.838 ± 0.062 2.018 ± 0.042 1.764 ± 0.045	Bone (Byrr) ananysis
CICC 24033 CICC 23961 CICC 24004 CICC 24041	Moraxella (5)	Moraxella osloensis Moraxells osloensis Moraxella osloensis Moraxella osloensis	Species Species Species Species	Micrococcus intens Moraxella sp. Moraxella osloensis Moraxella osloensis	1.768 ± 0.039 1.863 ± 0.047 1.887 ± 0.115 1.796 ± 0.070	
CICC 24044 CICC 24045	Danihacillus (7)	Moraxella osloensis Moraxella osloensis Paaniharillus monancansis	Species Species Species	Moraxella osloensis Moraxella osloensis Paanihavillus sa	2.078 ± 0.095 1.769 ± 0.030 1.71 ± 0.012	
CICC 24015 CICC 24015 CICC 24012		Paenibacillus urinalis Pseudomonas sp.	Species Genus	Paenibacillus sp. Paenibacillus sp. Pseudomonas nitroreducens	1.796 ± 0.058 1.812 ± 0.037	Housekeeping gene (gyrB)
CICC 23965		Sphingomonas paucimobilis	Species	Pseudomonas citronellolis Sphingomonas paucimobilis	$\begin{array}{c} 1.849 \pm 0.062 \\ 2.127 \pm 0.147 \end{array}$	analysis
CICC 23953 CICC 23962 CICC 24059 CICC 24024		Staphylococcus arlettae Staphylococcus epidermidis Staphylococcus sp. Staphylococcus sp.	Species Species Genus Genus	Staphylococcus arlettae Staphylococcus epidermidis Staphylococcus cohnii Staphylococcus cohnii	1.850 ± 0.154 1.973 ± 0.029 1.979 ± 0.122 1.800 ± 0.121	Housekeeping gene (tttf) analysis Housekeeping gene (tttf) analysis
CICC 24031 CICC 24036 CICC 24002	Stenotrophomonas (1)	Staphylococcus sp. Staphylococcus sp. Stenotrophomonas	Genus Genus Species	Staphylococcus cohnii Staphylococcus cohnii Stenotronhomonas	1.908 ± 0.112 1.974 ± 0.185 1.953 ± 0.076	Housekeening σene (σνr.Β)
2016		maltophilia	Solodo	maltophilia		analysis

Table 5. Strains with no defined species name

Table 3. Su'alls will no denned species name	Strain number) 16S rRNA gene sequencing MALDI-TOF MS Remark	Species ID Score Level of ID Species ID Score	(3) Bacillus sp. Genus Genus - <1.700 Housekeeping gene (gyrB) analysis	us Three different -	aryabhattai or Bacillus flexus species possible MS database	Bacillus simplex or Bacillus muralis Three different - <1.700 Bacillus butanolivorans was not in	or Bacillus butanolivorans species possible the MS database	acterium (1) Microbacterium sp. Genus - < 1.700	A A A A A A A A A A	Micrococcus sp. Genus - <1.700	Micrococcus sp. Genus - < 1.700	Micrococcus sp. Genus - <1.700	Micrococcus sp. Genus - < 1.700	Micrococcus sp. Genus - <1.700	Micrococcus sp. Genus - <1.700		Pseudomonas oryzihabitans species possible in the MS database		Stenotronhomonas sn Genns - <1.700
	Genus (Strain number)	Speci	Bacillus (3) Bacil	Bacil	aryal	Bacil	or Ba	Microbacterium (1) Micr	Micrococcus (7) Micr	Micr	Micr	Micr	Micr	Micr	Micr	Pseudomonas (1) Pseu	Pseu	Stenotrophomonas (2) Stenc	Stens
	Strain No.		CICC 23999	CICC 23994		CICC 23989		CICC 23988	CICC 23982	CICC 23983	CICC 23984	CICC 24000	CICC 23991	CICC 24047	CICC 24055	CICC 24050		CICC 24038	CICC 24039

metabolic and psychological divergence between the isolates and those in the MALDI-TOF MS database.

Fourteen strains in Table 6 were identified to genus level by molecular biological methods, but not to species level. The MALDI-TOF MS analysis was unreliable, as the scores were below 1.7. Therefore, other identification tools are needed to characterize these strains in the future.

DISCUSSION

FMCG are strongly associated with lifestyle, and may contain large quantities of water or rich nutrients that promote microbial growth. Formula design must adhere to the regulatory, industrial, or internal requirements of a preservation efficacy test, and a manufactured product must be analyzed for its microbiological content prior to release from the site³². However, conventional microbiological detection methods are time consuming as they must allow for microbial growth or incapability of on-site identification, which delays the product release¹⁷. Therefore, rapid and accurate identification of isolates from products or their manufacturing environment would greatly benefit the FMCG industries.

MALDI-TOF MS is a traditional analytical method that has only recently been considered for rapid microorganism identification⁹. The MALDI-TOF MS equipment has been customized to identify a variety of clinical isolates⁹, for example, 92% of 980 routine clinical isolates were correctly identification by MALDI-TOF MS at species-level; on the contrary, conventional identification methods only correctly identified 83.1% of the isolates²⁶. The high identification rate is based on the well-developed MS database, such as the Bruker BDAL Biotyper database contains the spectra of bacteria with more than 300 genus and 2200 species. The MS database covers the common bacteria found in industries, such as Clostridium, Escherichia, Lactobacillus, Paenibacillus and Salmonella9, 26. In studies of industrial Saccharomyces cerevisiae, MALDI-TOF MS was also confirmed as a rapid and reliable tool for accurate identification^{24, 25}. However, the industrial applicability of MALDI-TOF MS is rarely reported. It should be noted that clinical and industrial species are distinct, and the identification

accuracy mainly depends on the mass spectra of the database using MALDI-TOF MS. Therefore, if mass spectrometry databases were supplemented with industrially sourced data, the applicability of MALDI-TOF MS would be enhanced, especially in user-customizable databases.

In this work, a total of 152 strains were analyzed with scores lower than 2.0. Two of them, labeled CICC 24037 and CICC 23995, were only identified to the respective family level by 16S rRNA gene sequence analysis, and with MALDI-TOF MS scores below 1.7. The rest 150 strains were classified into 49 genera by the reference method. Forty strains were identified to the genus level by MALDI-TOF MS (Tables 2 and 4), and no misidentification results were found, suggesting the reliability of MALDI-TOF MS. By the reference identification method, 7 genera were not found in the current MS database, including Asaia, Domibacillus, Komagataeibacter, Luteococcus, Oceanobacillus, Planomicrobium, Zymomona, and 58.7% (88/150) strains were not recorded in the MS database. The 88 strains were classified into 42 genera. The results indicated strain divergence of the isolates from FMCG industries to those in the commercial MS database, and the necessity of data deposition for expanding MALDI-TOF MS application.

Very recently, the Bruker MALDI-TOF MS database was updated with additional new species including *Bacillus atrophaeus*, *Bacillus pumilus*, *Kocuria marina*, *Paenibacillus humicus*, and *Pseudomonas oryzihabitans*. This could affect the classification and scores of the strains labeled CICC 23975, CICC 23987, CICC 24027, CICC 24030, and CICC 24050. Every technology has its advantages and limitations. For MALDI-TOF MS, the MS database could affect the application range and identification accuracy. Therefore, database deposition will be continued by researchers to improve the performance of this technology.

The frequencies of strain occurrence are shown in Fig. 1. Some strains were repeatedly identified (more than 5 times), including 29 *Bacillus* strains, 8 *Halomonas* strains, 6 *Lysinibacillus* strains, 12 *Micrococcus* strains, 6 *Moraxella* strains, 8 *Pseudomonas* strains, and 8 *Staphylococcus* strains. *Bacillus* and *Lysinibacillus* can form spores, which are highly tolerant to extreme environmental stress^{16,18}.

Halomonas can survive over a wide range of salinity, and is resistant to surface active agents^{8, 10}. These genera demand attention, as they are often isolated in cosmetics^{12, 20, 23}. Some *Pseudomonas*, *Moraxella* and *Staphylococcus* species are implicated in human diseases, and should not be present in consumer products^{3, 21, 30}.

In conclusion, 152 bacterial strains were analyzed by MALDI-TOF MS with scores lower than 2.0, and supplemented with 16S rRNA and housekeeping genes sequence analysis and (where necessary) physiological and biochemical analyses. By depositing the generated mass spectrometry data in the MS database, we could tailor the use of MALDI-TOF MS to FMCG industrial microbial detection, greatly expanding the applicability of the method. Moreover, rapid and accurate identification of bacterial isolates from various samples enables agile, actionable mitigation planning, ensuring product quality and consumer safety. Expanding the database to include a broader set of industrially-source microbes will increase the success rate of identifications.

We note that the system did not misidentify or return a nonidentifiable identification for any frank human pathogens. This supports the validity of the Biotyper system for the identification of bacteria that could potentially pose a human health risk, which is critical for use of the system in both manufacturing and health care environments. This is in agreement with the recent approval for use by US Food and Drug Association via a 510(k) clearance in 2013, and expanded upon with a second 510(k) clearance in 2015, and clearance by the China Food and Drug Association in 2014, for use of the Bruker IVD database for in vitro diagnostics.

ACKNOWLEDGEMENTS

We thank Dr. Gongyi Shi of Bruker Daltonics Inc. for the help of data analysis and critical review of the manuscript. Thanks are due to Drs. Duane Charbonneau and Jeffery Ares of the Procter & Gamble Company, This work was supported by the National Infrastructure of Microbial Resources (NIMR2016-4).

REFERENCES

- Adékambi T., Berger P., Raoult D., Drancourt M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int. J. Syst. Evol. Microbiol. 2006; 56: 133–143.
- Bergeron M., Dauwalder O., Gouy M, Freydiere A.M., Bes M., Meugnier H., Benito Y., Etienne J., Lina G., Vandenesch F., Boisset S. Species identification of staphylococci by amplification and sequencing of the *tuf* gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. *Eur. J. Clin. Microbiol. Infect. Dis.* 2011; 30: 343-354.
- Bubeck Wardenburg J., Schneewind O. Vaccine protection against *Staphylococcus aureus* pneumonia. *J. Exp. Med.* 2008; 205: 287–294.
- 4. Christensen H., Olsen J.E. Phylogenetic relationships of *Salmonella* based on DNA sequence comparison of *atpD* encoding the beta subunit of ATP synthase. *FEMS Microbiol. Lett.* 1998; **161**: 89–96.
- Chui H., Chan M., Hernandez D., Chong P., McCorrister S., Robinson A., Walker M., Peterson L.A., Ratnam S., Haldane D.J., Bekal S., Wylie J., Chui L., Westmacott G., Xu B., Drebot M., Nadon C., Knox J.D., Wang G., Cheng K. Rapid, sensitive and specific *E. coli* H antigen typing by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-based peptide mass fingerprinting. *J. Clin. Microbiol.* 2015; 53: 2480–2485.
- Chun J., Bae K.S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 2000; 78: 123–127.
- Claydon M.A., Davey S.N., Edwards-Jones V., Gordon D.B. The rapid identification of intact microorganisms using mass spectrometry. *Nat. Biotechnol.* 1996; 14: 1584–1586.
- 8. Cummingst S.P., Gilmour D.J. The effect of NaCl on the growth of a *Halomonas* species: accumulation and utilization of compatible solutes. *Microbiology* 1995; **141:** 1413-1418.
- 9. Dingle T.C., Butler-Wu S.M. Maldi-tof mass spectrometry for microorganism identification. *Clin. Lab. Med.* 2013; **33:** 589–609.
- Donio M.B., Ronica F.A., Viji V.T., Velmurugan S., Jenifer J.S., Michaelbabu M., Dhar P., Citarasu T. *Halomonas* sp. BS4, a biosurfactant

- producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. *Springerplus* 2013; **2:** 149.
- 11. Frickmann H., Christner M., Donat M., Berger A., Essig A., Podbielski A., Hagen R.M., Poppert S. Rapid discrimination of *Haemophilus influenzae*, *H. parainfluenzae*, and *H. haemolyticus* by fluorescence in situ hybridization (FISH) and two matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) platforms. *PLoS One*. 2013; **8:** e63222.
- Guleria A. Isolation and identification of bacteria from different cosmetic samples and to check antimicrobial activity of antibiotics on bacteria isolated. *Int. J. Sci. Res.* 2014; 3: 462–465.
- Hart P.J., Wey E., McHugh T.D., Balakrishnan I., Belgacem O. A method for the detection of antibiotic resistance markers in clinical strains of *Escherichia coli* using MALDI mass spectrometry. *J. Microbiol. Methods* 2015; 111: 1-8.
- 14. La Scola B., Zeaiter Z., Khamis A., Raoult D. Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. *Trends Microbiol.* 2003; **11:** 318–321.
- Lane D.J. 16S/23S rRNA sequencing. pp. 115–147. In: Stackebrandt E, Goodfellow M (eds).
 Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons: Chichester, England, 1991.
- Lozano L.C, Dussán J. Metal tolerance and larvicidal activity of *Lysinibacillus sphaericus*. *World J. Microbiol. Biotechnol.* 2013; 29: 1383– 1389.
- Mathey R., Dupoy M., Espagnon I., Leroux D., Mallard F., Novelli-Rousseau A. Viability of 3 h grown bacterial micro-colonies after direct Raman identification. *J. Microbiol. Methods* 2015; 109: 67–73.
- 18. Moeller R., Stackebrandt E., Reitz G., Berger T., Rettberg P., Doherty A.J., Horneck G., Nicholson W.L. Role of DNA repair by nonhomologous-end joining in *Bacillus subtilis* spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. *J. Bacteriol.* 2007; **189:** 3306–3311.
- Moothoo-Padayachie A., Kandappa H.R., Krishna S.B.N., Maier T., Govender P. Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur. Food Res. Technol. 2013; 236: 351-364.

- Patrone V., Campana R., Vittoria E., Baffone W.
 In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against *Pseudomonas aeruginosa* and *Staphylococcus aureus*. *Curr. Microbiol*. 2010; 60: 237-241.
- Shah S.S., Ruth A., Coffin S.E. Infection due to Moraxella osloensis: case report and review of the literature. *Clin. Infect. Dis.* 2000; 30: 179– 181.
- Tran A., Alby K., Kerr A., Jones M., Gilligan P.H. Cost Savings Incurred by Implementation of routine microbiological identification by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. *J. Clin. Microbiol.* 2015; 53: 2473–2479.
- Tran T.T., Hitchins A.D. Microbial survey of shared-use cosmetic test kits available to the public. J. Ind. Microbiol. 1994; 13: 389-391.
- 24. Usbeck J.C., Kern C.C., Vogel R.F., Behr J. Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by matrix-assisted-laser-desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in response to varying growth conditions. Food Microbiol. 2013; 36: 379–387.
- Usbeck J.C., Wilde C., Bertrand D., Behr J., Vogel R.F. Wine yeast typing by MALDI-TOF MS. Appl. Microbiol. Biotechnol. 2014; 98: 3737–3752.
- Van Veen S.Q., Claas E.C., Kuijper E.J. Highthroughput identification of bacteria and yeast by matrix-assisted laser desorption ionizationtime of flight mass spectrometry in conventional medical microbiology laboratories. *J. Clin. Microbiol.* 2010; 48: 900–907.
- 27. Wang L.T., Lee F.L., Tai C.J., Kasai H. Comparison of *gyrB* gene sequences, 16S rRNA gene sequences and DNA DNA hybridization in the *Bacillus subtilis* group. *Int. J. Syst. Evol. Microbiol.* 2007; **57:** 1846–1850.
- Welham K.J., Domin M.A., Scannell D.E., Cohen E., Ashton D.S. The characterization of microorganisms by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun. *Mass Spectrom.* 1998; 12: 176– 180.
- Wolk D.M., Dunne Jr W.M. New Technologies in Clinical Microbiology. *J. Clin. Microbiol.* 2011; 49: S62–S67.
- Yates S.P., Taylor P.L., Jørgensen R., Ferraris D., Zhang J., Andersen G.R., Merrill A.R. Structure-function analysis of water-soluble

- inhibitors of the catalytic domain of exotoxin A from *Pseudomonas aeruginosa*. *Biochem. J.* 2005; **385**: 667–675.
- Zabbe J.B., Zanardo L., Mégraud F., Bessède E. MALDI-TOF mass spectrometry for early identification of bacteria grown in blood culture bottles. J. Microbiol. Methods 2015; 115: 45-46
- 32. Zaini N.A., Harith H.H., Olusesan A.T., Zulkifli A.H., Bakar F.A., Osman A., Hamid A.A., Saari
- N., Level of chemical and microbiological contaminations in chili bo (paste). *J. Food Prot.* 2010; **73**: 541-546.

© The Author(s) 2016. **Open Access**. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.